

Green H₂ – Solutions for Power Generation & Storage

ICCI 2023, Istanbul Expo Center Christian Grenz / Market & Business Development

Siemens Energy is a trademark licensed by Siemens AG.

Unrestricted use © Siemens Energy, 2022

WHY

- Green hydrogen is the second stage of the energy transition
- Indispensable for decarbonization
- In-house PEM electrolysis technology
- Large Power-to-X-solutions enabled by the full Siemens Energy competence
- Digital twin and service concepts

HOW

WHAT

- Secure technology and cost leadership
- Implement Giga factory
- Strong international partner ecosystem

We know-how to industrialize technologies!

ICCI Conference, May 2023

Siemens Energy is a trademark licensed by Siemens AG.

Christian Grenz / Market & Business Development 3 Unrestricted use © Siemens Energy, 2022

Today's challenge – Green energy needs to travel from lowest cost regions to decarbonize demand centers

Christian Grenz / Market & Business Development 4 Unrestricted use © Siemens Energy, 2022

ICCI Conference, May 2023

Hydrogen from renewables enables large scale, long term storage and sector coupling

Example applications for hydrogen and quantity required

Transport fuel Toyota Mirai

- Onboard storage as pressurized gas 700 bar
- Range > 1,000 km
- 5 kg H₂ per refill

Industrial power generation SGT 400

- 13 MW open cycle 100%
 H₂ gas turbine
- 1,100 kg H₂ per hour

Grid scale power generation SGT 9000 HL

- 830 MW combined cycle 100% H₂ gas turbine
- 50,000 kg H₂ per hour

Hydrogen capability in Siemens Energy medium size gas turbines SIEMENS

Power output in MW at ISO ambient conditions and natural gas H₂ content in natural gas (volume percent) 0% 25% 50% 75% 100% **SGT-800** 75 47 - 62 MW **SGT-750** 40 34 - 41 MW **SGT-700** 75 33 - 35 MW **SGT-600** 75 24 MW Released hydrogen capability Ongoing development Turbines can be used as MD as well. Christian Grenz / Market & Business Development 6

ICCI Conference, May 2023

All turbines equipped with DLE burner technology

Unrestricted use © Siemens Energy, 2022

Storage options for compressed hydrogen gas

= No option for re-electrification business models

	Tube	Manifold Cylinder Pack	Tube Trailer	Multi Element Gas Container	Cylinder Tank	Geological Storage
H ₂	1 kg	17 kg	300 kg	300 kg	450 kg	Thousands of tonnes
Gross weight	80 kg	1,500 kg	30,000 kg	25,000 kg	50,000 kg	-
Pressure	200 bar	300 bar	300 bar	300 bar	25 bar	60-200 bar
Capital cost	€ <1 k	€ 8.5 k	€ 275 k	€ 260 k	Typical range € 500-700/ kg	Typical range € 500-700/ kg

Pressure Vessel Types

Type 1 A traditional all-metal bottle made of steel used for storing liquid and gases for industrial processes. Cheap to produce, but heavy

Type 2 An additional layer of carbon fibre reinforcement is added round a steel inner tank and shares the load with the metal. This gives it added strength and reduces weight, but makes it more expensive than Type 1

Type 3 A carbon-fibre composite vessel, with a steel or aluminium vessel inside. The carbon fibre outer vessel takes the load. With more carbon fibre involved, costs are higher than Type 2, but higher pressures can be achieved

Type 4 A vessel made of all carbon fibre, with an inner liner of polyamide or polyethylene plastic. Characteristics are a much lower weight and very high strength. Comparatively expensive, because of the volume of carbon fibre

Alternatives to compressed hydrogen gas storage

for large scale and long-term energy storage (e.g. for re-electrification)

Liquid (Cryogenic) H₂

- H₂ boiling point:
 ~ 20 Kelvin/ ~ -253°C
 - c 🔛
- Cooling and compression to liquefy takes energy equivalent to around 30 % of the energy content of the hydrogen
- Once liquid can be transported in highly insulated containers and easily re-gasified by using ambient heat

NASA uses liquid H_2 for space rockets

Material based

Special materials that pack hydrogen molecules tightly within another substance

- Adsorbent e.g. MOF-5
- Liquide organic e.g. BN Methyl cyclopentane
- Interstitial hybrid e.g.
 LaNi₅H₆

Requires heavy material to be transported back for refilling

Chemical

Use H₂ to synthesize other chemicals that are easier to store and transport

- Methanol CH₃OH: Fisher-Tropsch-Process
- Ammonia NH₃: Haber-Bosch-Process

• 5-10% Energy penalty to convert

These fuels can be used as they are or "cracked" to release pure hydrogen

Hydrogen Generation

Silyzer 300 Fact Sheet

	Hydrogen production	335 kg/h
	Plant efficiency (HHV ¹)	>75.5%
47	Power demand	17.5 MW
	Start-up time	<1 min, enabled for PFRS ²
<u> </u>	Dynamics in range	10%/s in 0 – 100%
	Minimal load	40% single stack
<u>ې</u>	Dimension full stack array	15.0 x 7.5 x 3.7 m
$\otimes \bigcirc$	Dimension system plant	35.5 x 15.5 x 9.0 m
	Stack design lifetime	Optimized for 80 kOH ⁴
24 ⁵	Plant availability	~95%
	Demin water consumption	10 l/kg H ₂
	Dry gas quality ³	99.9999%
	Delivery pressure	Customized

1 Plant efficiency includes rectifier, transformer, transformer cooling and gas cooling2 Primary Frequency Response Service | 3 With DeOxo | 4 Operating Hours

Siemens Energy is a trademark licensed by Siemens AG.

Christian Grenz / Market & Business Development **11** Unrestricted use © Siemens Energy, 2022

Projects completed or in implementation based on Silyzer 300 Scale-up is already happening

6 MW	8.5 MW	17.5 MW	50 MW	50 MW	70 MW	200 MW
 H2Future Linz Green hydrogen for the steel making process Our partners: VERBUND, voestalpine, Austrian Power Grid (APG), TNO, K1-MET 	 Wunsiedel Green hydrogen for industry, grid services and mobility Our partners: Siemens AG, WUNH2, SWW Wunsiedel GmbH 	 Oberhausen Green hydrogen for Air Liquide pipeline infrastructure Our partner: Air Liquide 	 e-Methanol Kassø Green hydrogen for CO₂-neutral shipping at large- scale Our partner: European Energy 	Chemical Company • Hydrogen for chemical site	 FlagshipONE Green hydrogen for CO₂-neutral shipping at large- scale Our partner: Ørsted 	 NormandHy Renewable electricity Engineering and Long Lead Started Our Partner: Air Liquide
ICCI Conferen <u>ce, May</u>	y 2023 Siemens E	nergy is a trademark licensed by	Siemens AG.	Chri	stian Grenz / Market & Busir Unrestricte <u>d use</u> @	ness Development 12 © Siemens Energy, 20 <u>22</u>

Ready to deliver large-scale electrolysis systems + capacity increase in Germany is locked and loaded

- Implementation of modern robots
- Fully automated production line
- Industry 4.0 Digitalization implemented

- Inhouse design allows for internal and external local packaging
- Packaging will be established depending on the development of the markets

- Capacity growth plan locked-in and layouts finalized
- Additional 1 GW per year depending on demand

Siemens Energy The right partner to lead green hydrogen solutions

Proven industrial-grade largescale electrolyzer systems >200,000 operating h in MW range

Scalable solutions

Pre-fabricated and pre-engineered packages

Energy Consulting & Digital Services

 H_2 value chain design and optimization

Fully integrated solutions

from green electrons to green molecules with our strong partner ecosystem

Global G2M setup and customer domain know-how

configuration of industryspecific solutions

Reliable technology and reliable partner

with highest standards in safety and project excellence

"We want to be a driving force in hydrogen technology. To make green hydrogen competitive, we need serially produced, low-cost, scalable electrolyzers. We also need strong partnerships and look forward to implementing innovative solutions and collaborating to shape this new hydrogen market."

Christian Bruch, CEO, and President of Siemens Energy

Large scale electrolyzer partnership for sustainable hydrogen production

Siemens Energy and Air Liquide to combine their expertise in hydrogen technology

- Creation of a joint venture (74.9% owned by Siemens Energy and 25.1% owned by Air Liquide) dedicated to the series production of industrial scale renewable hydrogen electrolyzers in Europe
- Multi-gigawatt factory that produces Silyzer electrolysis stacks located in the German capital Berlin
- The factory will supply stacks to both Groups for their respective broad range of customers and to serve the rapidly growing market
- The strategic partnership will benefit from a portfolio of hydrogen projects combining both Air Liquide and Siemens Energy's pipelines
- Dedicate R&D capacities to the co-development of the next generation of electrolyzer technologies

Christian Grenz / Market & Business Development 15 Unrestricted use © Siemens Energy, 2022

Contact page

Christian Grenz

Director Market & Business Development Schuckertstr. 1 91058 Erlangen Germany Phone: +49 9131 94 25 61 3 Mobile: +49 152 22 97 29 44 Christian.Grenz@siemens-energy.com